Monday, December 7, 2009

First Direct Observation of a Planet-Like Object Orbiting Star Similar to Sun


This August 2009 discovery image of GJ 758 B was taken with the Subaru Telescope’s HiCIAO instrument in the near infrared, which measures and records differences in heat. Without the special technique employed here (angular differential imaging), the star’s glare would overwhelm the light from the planet candidates. The planet-like object, GJ 758 B, is circled as B in the lower right portion of the image. An unconfirmed companion planet or planet-like object, C, can be viewed above B. The star, GJ 758, is located at the center of the image, at the hub of the starburst. The graphic at the top compares the orbital distances of solar system planets. (Credit: Max Planck Institute for Astronomy/National Astronomical Observatory of Japan)

An international team of scientists that includes an astronomer from Princeton University has made the first direct observation of a planet-like object orbiting a star similar to the sun.


The finding marks the first discovery made with the world’s newest planet-hunting instrument on the Hawaii-based Subaru Telescope and is the first fruit of a novel research collaboration announced by the University in January.


The object, known as GJ 758 B, could be either a large planet or a “failed star,” also known as a brown dwarf. The faint companion to the sun-like star GJ 758 is estimated to be 10 to 40 times as massive as Jupiter and is a “near neighbor” in our Milky Way galaxy, hovering a mere 300 trillion miles from Earth.


“It’s a groundbreaking find because one of the current goals of astronomy is to directly detect planet-like objects around stars like our sun,” said Michael McElwain, a postdoctoral research fellow in Princeton’s Department of Astrophysical Sciences who was part of the team that made the discovery. “It is also an important verification that the system — the telescope and its instruments — is working well.”


Images of the object were taken in May and August during early test runs of the new observation equipment. The team has members from Princeton, the University of Hawaii, the University of Toronto, the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany, and the National Astronomical Observatory of Japan (NAOJ) in Tokyo. The results will be published in the Astrophysical Journal Letters.


“This challenging but beautiful detection of a very low mass companion to a sun-like star reminds us again how little we truly know about the census of gas giant planets and brown dwarfs around nearby stars,” said Alan Boss, an astronomer at the Carnegie Institution for Science in Washington, D.C., who was not involved in the research. “Observations like this will enable theorists to begin to make sense of how this hitherto unseen population of bodies was able to form and evolve.” Full story

Story Source:

http://www.sciencedaily.com/releases/2009/12/091203141909.htm

Adapted from materials provided by Princeton University. Original article written by Kitta MacPherson.


Journal Reference:
  1. Christian Thalmann, Joseph Carson, Markus Janson, Miwa Goto, Michael Mcelwain, Sebastian Egner, Markus Feldt, Jun Hashimoto, Yutaka Hayano, Thomas Henning, Klaus W. Hodapp, Ryo Kandori, Hubert Klahr, Tomoyuki Kudo, Nobuhiko Kusakabe, Christoph Mordasini, Jun-Ichi Morino, Hiroshi Suto, Ryuji Suzuki, Motohide Tamura. Discovery of the Coldest Imaged Companion of a Sun-Like Star. Astrophysical Journal Letters, 2009; (accepted for publication) [link]

http://www.sciencedaily.com/releases/2009/12/091203141909.htm